Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2310379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183310

RESUMO

Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.

2.
Nano Lett ; 24(2): 584-591, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165127

RESUMO

Cu2S likely plays an important role in the sharp resistivity transition of LK-99. Nevertheless, this immediately arouses an intriguing question of whether the extraordinary room-temperature colossal magnetoresistance in the initial reports, which has been less focused, originates from Cu2S as well. To resolve this issue, we have systematically investigated the electrical transport and magnetotransport properties of near-stoichiometric Cu2S pellets and thin films. Neither Cu2S nor LK-99 containing Cu2S in this study was found to exhibit the remarkable magnetoresistance effect implied by Lee et al. This implies that Cu2S could not account for all of the intriguing transport properties of the initially reported LK-99, and the initially reported LK-99 samples might contain magnetic impurities. Moreover, based on the crystal-structure-sensitive electrical properties of Cu2S, we have constructed a piezoelectric-strain-controlled device and obtained a giant and reversible resistance modulation of 2 orders of magnitude at room temperature, yielding a huge gauge factor of 160,000.

3.
Neuromolecular Med ; 25(3): 360-374, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36913134

RESUMO

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model is one of the most common animal models for Parkinson's disease (PD). It is classified into three types: acute, subacute, and chronic intoxication models. The subacute model has attracted much attention for its short period and similarity to PD. However, whether subacute MPTP intoxication in mouse mimics the movement and cognitive disorders of PD still remains highly controversial. Therefore, the present study reassessed the behavioral performances of subacute MPTP intoxication in mice using open field, rotarod, Y maze,  and gait analysis at different time points (1, 7, 14, and 21 days) after modeling. Results of the current study showed that although MPTP-treated mice using subacute regimen showed severe dopaminergic neuronal loss and evident astrogliosis, they failed to display significant motor and cognitive deficits. Besides, expression of mixed lineage kinase domain-like (MLKL), a marker of necroptosis, was also significantly increased in the ventral midbrain and striatum of MPTP-intoxicated mice. This evidently implies that necroptosis may play an important role in MPTP-induced neurodegeneration. In conclusion, the findings of the present study suggest that subacute MPTP-intoxicated mice may not be a suitable model for studying parkinsonism. However, it can help in revealing the early pathophysiology of PD and studying the compensatory mechanisms which occur in early PD that prevent the emergence of behavioral deficits.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Mesencéfalo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo
4.
Neurosci Lett ; 788: 136841, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-35988790

RESUMO

MPTP models have been developed to mimic human Parkinson's disease and serve as an indispensable tool for studying PD. Among them, subacute MPTP PD models are popular due to their short modeling period and similarity to PD pathology. However, the early pathophysiological mechanism of the model remains to be further clarified. More and more studies have shown that dysregulation of miRNAs plays an important role in the occurrence and development of neurodegenerative diseases, including PD. In this study, we identified 43 differentially expressed microRNAs (miRNAs) in the ventral midbrain of MPTP-induced subacute PD mouse by RNA sequencing. Further bioinformatics analysis revealed that these miRNAs were significantly enriched in axon guidance/neuron projection, metabolic pathways/cellular macromolecule metabolic process and PI3K/AKT signaling pathways, which were involved in the occurrence and development of early PD. Thus, targeted regulation of these miRNAs may reverse the neurodegeneration of early PD.


Assuntos
MicroRNAs , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...